Consider the Alternatives: Navigating Fairness-Accuracy Tradeoffs via Disqualification

Guy N. Rothblum & Gal Yona, Weizmann Institute

Group fairness notions can be in **direct conflict with accuracy** (even when the learner is well-intentioned).

We present a theoretical framework for reasoning about such tradeoffs in supervised ML. Our formalization draws inspiration from the disparate impact doctrine [1]:

"Disparate impact is not concerned with the intent or motive for a policy; where it applies, ... first asks if there is a disparate impact on members of a protected class, then whether there is some business justification for that impact, and finally, whether there were less discriminatory means of achieving the same result"

Setup: Predictors are mapping from features *X* and group membership *A* (specifying S, T) into [0,1].

Definition (Loss imbalance): The loss imbalance of *h* (for y = 1) in $T \rightarrow S$ is

$$\begin{split} dLossImb(h; \ell_B) &= E_{x, y \sim S} + [\ell_B(h(x), y)] \\ &- E_{x, y \sim T^+} [\ell_B(h(x), y)] \end{split}$$

When ℓ_B is the exp. 0/1 loss, recovers balance [3] and Equal Opportunity [2].

Disqualification

A classifier should be **disqualified** if there exists a fairer alternative that does not degrade accuracy by "too much". "Too much" is quantified using a parameter $\gamma \ge 0$:

1 unit accuracy $\equiv \mathbf{\gamma}$ units fairness 1 unit fairness $\equiv 1/\mathbf{\gamma}$ units accuracy

Subtle point: requires specifying an appropriate *normalization* to bring fairness and accuracy to the same units.

Definition (γ -disqualification): A classifier h' γ -disqualifies h w.r.t ℓ_A , ℓ_B if

 $\begin{aligned} dLossImb(h; \ell_B) \\ - dLossImb(h'; \ell_B) \\ > f_{\gamma}([\ell_A(h') - \ell_A(h)]_+) \end{aligned}$

where loss imbalance is computed in the direction that $dLossImb(h; \ell_B) > 0$.

Definition (γ -fairness): h is (γ , H)-fair if it is not disqualified by any h' in H. In the unconstrained case, we say h is γ -fair.

Scaling

How to instantiate the scaling function? Our approach: Consider the minimal level γ for which the Bayes optimal predictor h^* is not γ -disqualified by any other classifier, and attempt to select the scaling function in a way that "anchors" the value at $\gamma = 1$.

A (minimal) desirable property: guarantees the fairness of h^* is invariant to scalar multiplications of ℓ_A (does not meaningfully change the fairness-accuracy trade-offs).

Case studies

1: Measuring accuracy using **squared loss** We show a natural scaling function that satisfies the above requirement:

$$(a) = \sqrt{\gamma \cdot \frac{2a}{\min \eta_{S^+}, \eta_{T^+}}}$$

 f_{γ}

2: Measuring accuracy using 0/1 loss We show no "reasonable" function can satisfy the requirement. Intuitively, 0/1 loss is highly "Non-Lipschitz" w.r.t tradeoffs: tiny accuracy improvements can result in unbounded degradation in fairness.

ERM subject to disqualification:

We present an algorithm that, given a dataset D and parameter γ , finds an approximately optimal (γ ,H)-fair classifier. The algorithm is stated as a reduction to the well studied task of approximating the Pareto frontier of H.

Applications

(1) Selection with γ :

Example: Suppose we apply two strategies (fairness aware & unaware) on the Adult Income dataset, yielding **h** with accuracy (squared error) 0.149 but unfairness 0.11, and **h**' with accuracy 0.150 but improved unfairness of 0.0051. Disqualification tells us **we should prefer h' over h if fairness is 20x as important as accuracy is**.

(2) Comparing strategies without γ:

For a classifier h, compute the "effective unfairness" of h, $\hat{\gamma}(h)$, as the minimal value γ for which there is another classifier that γ -disqualifies h.

 Big data's disparate impact; S Barocas, AD Selbst -Calif. L. Rev., 2016
Equality of **opportunity** in supervised learning; M Hardt, E Price, N Srebro
Inherent trade-offs in the fair determination of risk scores
J Kleinberg, S Mullainathan, M Raghavan